53 research outputs found

    Locomotor system simulations and muscle modeling of the stick insect (Carausius morosus)

    Get PDF
    It is a matter of fact that even so called "primitive species" (like insects) readily outperform any human locomotive invention with respect to agility, adaptability and reliability - to name the least. The work at hand deals with two aspects that contribute to the pre-eminence of biological, terrestrial locomotor systems, namely motion control and muscle properties. In the first part of this work, a new, biologically well-founded approach for the control of articulated legs is presented. This controller, based on the detailed physiological knowledge of the stick insect's (Carausius morosus) leg control, redundantizes complex forward or backward kinematic calculations by dexterous employment of sensory feedback and muscle properties. This section shows that the collection of segmental coordination rules (which have been studied in the stick insect for several decades) is indeed able to generate periodic, robust middle leg stepping movements in a physical simulation of the animal. Furthermore, the controller is capable of handling stepping in the front and hind leg; although for hind leg stepping minor modifications were necessary. The second part of this work is about muscle modeling and it is divided into three chapters. Lynchpin of any motion is the muscle, and nowadays it is well-accepted that muscle properties are complex and highly variable. Hence, no trivial relationship between motor neuron activity and motion can be expected and typically, computer modeling is required to link the two. This part therefore first describes how a model of the stick insect's extensor tibiae muscle can be developed for individual muscles. The approach presented offers a way to measure and model all properties for the generation of a classical Hill-type model, in a single animal. Therefore it was necessary to reduce the number of measurements, stimulations and the overall time span of the experiment to a degree this muscle could take without severe loss in vitality. After this approach has been described, the next section deals with a possible application of individual muscle modeling. The variation of muscle model parameters is investigated for 10 different individuals. The question of parameter independence is addressed, and in fact it could be shown that there is co-variation between two different pairs of parameters. One correlation was found between two parameters modeling passive static force curve, the other between one parameter of the force-length and one of the force-activation curve. Both correlations suggest that the model can be reduced further. In the final section, isometric and isotonic simulations were performed with different model configurations. It is investigated how far averaging parameters of different animals would influence model performance. This is studied by comparing the error produced by four different model configurations, differing in their share of averaged parameters. Compared to a model entirely composed of averaged parameters, performance of the muscle specific model improves by approximately 40%

    Conductance Distribution of a Quantum Dot with Non-Ideal Single-Channel Leads

    Get PDF
    We have computed the probability distribution of the conductance of a ballistic and chaotic cavity which is connected to two electron reservoirs by leads with a single propagating mode, for arbitrary values of the transmission probability Gamma of the mode, and for all three values of the symmetry index beta. The theory bridges the gap between previous work on ballistic leads (Gamma = 1) and on tunneling point contacts (Gamma << 1). We find that the beta-dependence of the distribution changes drastically in the crossover from the tunneling to the ballistic regime. This is relevant for experiments, which are usually in this crossover regime. ***Submitted to Physical Review B.***Comment: 7 pages, REVTeX-3.0, 4 postscript figures appended as self-extracting archive, INLO-PUB-940607

    Weak-Localization in Chaotic Versus Non-Chaotic Cavities: A Striking Difference in the Line Shape

    Full text link
    We report experimental evidence that chaotic and non-chaotic scattering through ballistic cavities display distinct signatures in quantum transport. In the case of non-chaotic cavities, we observe a linear decrease in the average resistance with magnetic field which contrasts markedly with a Lorentzian behavior for a chaotic cavity. This difference in line-shape of the weak-localization peak is related to the differing distribution of areas enclosed by electron trajectories. In addition, periodic oscillations are observed which are probably associated with the Aharonov-Bohm effect through a periodic orbit within the cavities.Comment: 4 pages revtex + 4 figures on request; amc.hub.94.

    Reaction matrix for Dirichlet billiards with attached waveguides

    Full text link
    The reaction matrix of a cavity with attached waveguides connects scattering properties to properties of a corresponding closed billiard for which the waveguides are cut off by straight walls. On the one hand this matrix is directly related to the S-matrix, on the other hand it can be expressed by a spectral sum over all eigenfunctions of the closed system. However, in the physically relevant situation where these eigenfunctions vanish on the impenetrable boundaries of the closed billiard, the spectral sum for the reaction matrix, as it was used before, fails to converge and does not reliably reproduce the scattering properties. We derive here a convergent representation of the reaction matrix in terms of eigenmodes satisfying Dirichlet boundary conditions and demonstrate its validity in the rectangular and the Sinai billiards

    How Phase-Breaking Affects Quantum Transport Through Chaotic Cavities

    Full text link
    We investigate the effects of phase-breaking events on electronic transport through ballistic chaotic cavities. We simulate phase-breaking by a fictitious lead connecting the cavity to a phase-randomizing reservoir and introduce a statistical description for the total scattering matrix, including the additional lead. For strong phase-breaking, the average and variance of the conductance are calculated analytically. Combining these results with those in the absence of phase-breaking, we propose an interpolation formula, show that it is an excellent description of random-matrix numerical calculations, and obtain good agreement with several recent experiments.Comment: 4 pages, revtex, 3 figures: uuencoded tar-compressed postscrip

    Reflection Symmetric Ballistic Microstructures: Quantum Transport Properties

    Full text link
    We show that reflection symmetry has a strong influence on quantum transport properties. Using a random S-matrix theory approach, we derive the weak-localization correction, the magnitude of the conductance fluctuations, and the distribution of the conductance for three classes of reflection symmetry relevant for experimental ballistic microstructures. The S-matrix ensembles used fall within the general classification scheme introduced by Dyson, but because the conductance couples blocks of the S-matrix of different parity, the resulting conductance properties are highly non-trivial.Comment: 4 pages, includes 3 postscript figs, uses revte

    GENERALIZED CIRCULAR ENSEMBLE OF SCATTERING MATRICES FOR A CHAOTIC CAVITY WITH NON-IDEAL LEADS

    Full text link
    We consider the problem of the statistics of the scattering matrix S of a chaotic cavity (quantum dot), which is coupled to the outside world by non-ideal leads containing N scattering channels. The Hamiltonian H of the quantum dot is assumed to be an M x N hermitian matrix with probability distribution P(H) ~ det[lambda^2 + (H - epsilon)^2]^[-(beta M + 2- beta)/2], where lambda and epsilon are arbitrary coefficients and beta = 1,2,4 depending on the presence or absence of time-reversal and spin-rotation symmetry. We show that this ``Lorentzian ensemble'' agrees with microscopic theory for an ensemble of disordered metal particles in the limit M -> infinity, and that for any M >= N it implies P(S) ~ |det(1 - \bar S^{\dagger} S)|^[-(beta M + 2 - beta)], where \bar S is the ensemble average of S. This ``Poisson kernel'' generalizes Dyson's circular ensemble to the case \bar S \neq 0 and was previously obtained from a maximum entropy approach. The present work gives a microscopic justification for the case that the chaotic motion in the quantum dot is due to impurity scattering.Comment: 15 pages, REVTeX-3.0, 2 figures, submitted to Physical Review B

    The impact of capsaicinoids on APP processing in Alzheimer's disease in SH-SY5Y cells

    Get PDF
    The vanilloid capsaicin is a widely consumed spice, known for its burning and "hot" sensation through activation of TRPV1 ion-channels, but also known to decrease oxidative stress, inflammation and influence tau-pathology. Beside these positive effects, little is known about its effects on amyloid-precursor-protein (APP) processing leading to amyloid-β (Aβ), the major component of senile plaques. Treatment of neuroblastoma cells with capsaicinoids (24 hours, 10 µM) resulted in enhanced Aβ-production and reduced Aβ-degradation, leading to increased Aβ-levels. In detailed analysis of the amyloidogenic-pathway, both BACE1 gene-expression as well as protein-levels were found to be elevated, leading to increased β-secretase-activity. Additionally, γ-secretase gene-expression as well as activity was enhanced, accompanied by a shift of presenilin from non-raft to raft membrane-domains where amyloidogenic processing takes place. Furthermore, impaired Aβ-degradation in presence of capsaicinoids is dependent on the insulin-degrading-enzyme, one of the major Aβ-degrading-enzymes. Regarding Aβ-homeostasis, no differences were found between the major capsaicinoids, capsaicin and dihydrocapsaicin, and a mixture of naturally derived capsaicinoids; effects on Ca2+-homeostasis were ruled out. Our results show that in respect to Alzheimer's disease, besides the known positive effects of capsaicinoids, pro-amyloidogenic properties also exist, enhancing Aβ-levels, likely restricting the potential use of capsaicinoids as therapeutic substances in Alzheimer's disease

    Weak-Localization and Integrability in Ballistic Cavities

    Full text link
    We demonstrate the existence of an interference contribution to the average magnetoconductance, G(B), of ballistic cavities and use it to test the semiclassical theory of quantum billiards. G(B) is qualitatively different for chaotic and regular cavities, an effect explained semiclassically by the differing classical distribution of areas. The magnitude of G(B) is poorly explained by the semiclassical theory of coherent backscattering (elastic enhancement factor)-- correlations beyond time-reversed pairs of trajectories must be included-- but is in agreement with random matrix theory.Comment: 12 pages + 3 figures, revtex, hub-92-w

    Geometry-dependent scattering through quantum billiards: Experiment and theory

    Full text link
    We present experimental studies of the geometry-specific quantum scattering in microwave billiards of a given shape. We perform full quantum mechanical scattering calculations and find an excellent agreement with the experimental results. We also carry out the semiclassical calculations where the conductance is given as a sum of all classical trajectories between the leads, each of them carrying the quantum-mechanical phase. We unambiguously demonstrate that the characteristic frequencies of the oscillations in the transmission and reflection amplitudes are related to the length distribution of the classical trajectories between the leads, whereas the frequencies of the probabilities can be understood in terms of the length difference distribution in the pairs of classical trajectories. We also discuss the effect of non-classical "ghost" trajectories that include classically forbidden reflection off the lead mouths.Comment: 4 pages, 4 figure
    corecore